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Cluster Monte Carlo simulations of the nematic-isotropic transition
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We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-
isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and
Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and
greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for
systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system
size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.
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The Lebwohl-LashefLL) model[1] is a lattice model of L =24 and 28, and thus did not have enough data to carry out
rotors with an orientational order-disorder transition. Whilea finite size scaling analysis &F. Instead they estimated
it neglects the coupling between the orientational and transhe value ofT,. in the thermodynamic limit by extrapolating
lational degrees of freedom present in a real nematic liquidhree different measures @t.: the positions of the maxima
crystal, it is generally believed that this coupling does notin the specific heat and susceptibility and the temperature
play a significant role at the nematic-isotrogid) transition. ~ where the two free energy wells are of equal depth. How-
With the absence of translational degrees of freedom the Llever, as we demonstrate below, the system sizes considered
model is particularly well suited for large-scale simulationsby Zhanget al. are not in the finite size scaling regime, and
of the transition. The model is defined by the Hamiltonian thus their estimate of; in the thermodynamic limit is not

accurate.
3 1 Over the past decade significant advances have been made
H=— e(Z) {5( o o}) E] (1) in development of algorithms that overcome critical slowing
ij

down in magnetic spin systenid1]. In particular, single
cluster algorithms have proven to be very efficient in simu-
where the sum is over all nearest neighbors arisl a cou- lating the three-dimensional Ising.Y, and Heisenberg mod-
pling parameter. The long axes of the rotors are specified bgls. These algorithms are nonlocal updating methods where a
unit vectorseo; . The LL model has been intensively investi- single cluster of spins is constructed and the spins within the
gated using Monte Carlo techniques since its introductiorcluster are updated simultaneously. In the Ising ddsd
[2-7]. clusters of spins are formed by creating bonds between par-
As in real experimental systems the NI transition in theallel spins with a probability that guarantees detailed bal-
LL model is weakly first order; thus, there is significant criti- ance. For models with continuous symmetry WoIEB] in-
cal slowing down in the neighborhood of the transition. In atroduced a cluster algorithm where “parallel spins” refers to
Monte Carlo simulation the system gets trapped in one of thepins that point to the same hemisphere. A hemisphere is
free energy wells corresponding to the nematic or isotropiaefined by an equatorial plane perpendicular to a randomly
phase, and the conventional single flip Metropolis algorithmchosen direction. Nematic liquid crystals differ in an im-
becomes inefficient especially as the system size is inportant symmetry aspect from magnetic systems, name|y’
creased. While Boschet al. [7] carried out simulations on “up” and “down” Spins are equi\/a|ent_ To construct a clus-
systems as large as 12020 120, the most detailed study ter algorithm suitable for simulating the LL model the Wolff
of the NI transition was carried out by Zhamegal. [6] on  algorithm must be modified to account for this symmetry
systems up to 2828x28. These authors used the Lee- difference. The necessary modification was done by Kunz
Kosterlitz finite size scaling methdd,9] supplemented by and Zumbach[14], and used by them to study the two-
the Ferrenberg-Swendsen reweighting technidu® to de-  dimensional LL model. Here we use their algorithm, along
termine the order of the NI transition and estimate the valugyith the Lee-Kosterlitz finite size scaling method, to study
of the transition temperaturg; in the thermodynamic limit.  the first-order transition in the three-dimensional LL model.
In the Lee-Kosterlitz method one examines the finite size Following Kunz and Zumbach, we randomly choose a

scaling of the free energy barrie&rF between the nematic jrection 1. Then we reflect any molecular long axes for
and isotropic phases; at a first-order transition this should b\(/avhich 720 by the transformationr— — o~ note that the
an increasing function of the linear system sizewhile it i i 7

should approach a constant for systems with continuouyam'ltoma_nﬁ Is invariant under th'S, ope[atlon. .Next we
phase transitions. For a large enough system, specifically Choose a siteat random and reflect ij =R(r) o; using the
> ¢, where¢ is the correlation length, a finite size scaling reflection operatoR(r) defined by

analysis predicts thatF ~L? for three-dimensional systems.

In the LL model Zhanget al. found a small free energy bar- R L

rier appearing at the two largest system sizes they studied, R(r)o,=—o;+2(o;-1)r. 2
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the intermediate region close to the NI transition temperature
the system flips between isotropic and nematic states.

We have used the cluster algorithm to simulate the LL
model on a simple cubic lattice of linear dimensibn 30
<L=<70, with periodic boundary conditions, in order to
study the properties of the NI transition. The temperaflre
was measured in dimensionless unitsefifg, in agreement
with the units used in previous studies of this model. Our
initial random configurations were equilibrated for at least
200000 Monte Carlo stegMCS) before starting production
runs. We found that the average cluster size at temperatures

FIG. 1. (a) lllustration of the reflection operatioR(r), Eq.(2).  close to the NI FranSition is approximately 0[\1-.75“93 per
The unit vectorr is chosen randomly at the start of the algorithm. QIUSter(WhereN is the total nu,mber of Iatyce sitesessen-
The reflection operation yields the new molecular orientaign tially |ndepend_ent of system size. ApprOX|mate_Iy half of the
=R(r)o; as shown(b) lllustration of the formation of a cluster of MCS result_ed in cluste_rs with fewer than ten sites anq were

gfficiently simulated with a scalar code. However, a signifi-
cant fraction of clusters hald/2 sites or greater, and employ-
I*’ng a vectorizable cluster construction meth&8] yielded a
sixfold speedup.

For each configuration generated, we calculated the en-
ergy per siteE="H/N. To ascertain the nature of the phase
transition we proceeded as in Rg6] and used the method
of Lee and Kosterlit48,9], which relies on the single histo-

) o o ) o gram reweighting technique of Ferrenberg and Swendsen
This operation is illustrated in Fig.(d). Unlike the original [10]. Following the approach of the latter authors we stored
Wolff reflection operation, which reflects spins from the (e configuration data in a histograf(E, T,L). The nor-
original hemisphere to the opposite one, the present refle¢njized probability distribution functio(E,T,L) of the

tion operator keeps the molecular orientation vectors in th%nergy is then given by

same hemisphere defined byNext we form bonds with the

a)

long axeso; and o on the plane perpendicular io as well as the
projections of the molecular long axes produced by the reflectio
operatorR(r) acting on these two molecules. Two molecules are
likely to form a cluster if they each make an angle of approximately
45° withr and if the anglep between their projections is less than
90°.

nearest neighbors af{ with probability H(E,T,L)
P(E,T,L)= ————. (4)
. , , ~ H(E,T,L
Pij=1—exp{min[0,8(07 - 0y)?— B(o] -[R(r) oy ])?]} EE: ( )
=1—exp{min[0,48(a] -1)(a;-T)((0] - 07)— (o] -T) Given this distribution function at temperatur§, the
- Ferrenberg-Swendsen method allows the calculation of ther-
X(oj-1)1}, 3) modynamic quantities at a different temperatlrein the

neighborhood of. Specifically, thermodynamic quantities at
whereB=_3¢€/2kgT. This probability is a modification of the T’ can be calculated using the distribution function
one introduced by Wolff, replacing the Heisenberg interacP(E,T’,L) where
tion —Jo;- oy by the Lebwohl-Lasher interaction 3 (o

-07)%. As in the original Wolff algorithm we continue this , . H(ET,L)exp—ABE)
process, forming bonds with the nearest neighbors of all re- P(E,T.L)= ©)
flected molecular orientation vectors until the cluster cannot EE: H(E,T,L)exp(—ABE)

grow any further.
To understand the formation of clusters, consider the Pro; 4
jection of two molecular orientation vectoss and one of its

nearest neighbore; on the plane perpendicular tobefore AB= (1T —1/T). (6)
the reflection operation is performésee Fig. 1b)]. A bond

between these two molecules will likely form if the angle  Tys, accurate information over the entire critical region can
between their projections is less than 90°. Note that the probye extracted from a small number of simulations.

ability Eq. (3) for the bond formation is maximized when the  The | ee-Kosterlitz method utilizes the system size depen-
angle betweew; anda; is 90° and each of these molecules dence of the barrieA F separating the isotropic and nematic
makes an angle of 45° with Thus, as in the original Wolff free energy minima at the transition temperature to deter-
algorithm, at low temperatures the molecules are nearly alinine the order of the transition. If the barrier grows with
aligned and it is highly probable that a large fraction of allincreasingL then the transition is first order; furthermore, if
molecules will be flipped at once. On the other hand at higtfinite size scaling holds, thekF ~L? in a three-dimensional
temperatures the distribution of molecules will be isotropic,system. To determine the barrier height we use the free-
resulting in flipping small clusters in random directions. In energy-like quantity
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FIG. 3. The free energy barrier heighE/L? (measured in units
of 10" °¢ divided by the lattice spacing squajexs a function oL
(measured in units of the lattice spacini finite size scaling were
é)lbeyed,AF/LZ would be independent df.

FIG. 2. Free energy, Ed7), in units of € as a function of the
energy per unit sit& (also measured in units @f, for four differ-
ent lattice sizes,.=30 (@), 50 (A), 60 (O), 70 (*). Thedata
for the three largest system sizes have been displaced vertically f

th ke of clarity. . .
© sake of carty The barrier height\F(L) can be computed as follows:

FEET.L)~~InPETL), @) AF(L)=F(Ep,T,.L)—F(E;,T,L), ®)

which differs from the true free energy by additive quantities . ]
dependent only off and L that are irrelevant to computa- WhereEn, is the energy corresponding to the top of the free
tions of free energy differences. This free-energy-like quan€nergy barrier and, is either one of the degenerate local
tity is shown in Fig. 2 for different system sizes, and we noteMinima. In the finite size scaling regime we would expect
the appearance of a pronounced double well structure fot,hatAF~L2._ Our results for.the.barrler height as a function
sufficiently large system sizes. The right and left hand well°f system size are shown in Fig. 3, where we pidE/ L2 _
correspond to the nematic and isotropic phases, respectivelyersusL. It is apparent from our plot that even systems with

In collecting our data we made sure that the system made 4= 70 are not yet in the finite size scaling regime. We have
least 100 hops between the two wells for the largest Syste,ﬁstimated the system sizes needed to observe finite size scal-
size of 70, for a run of & 10° MCS. For each system size,
we performed sufficient MCS such that the typical number of
points in one bin of the histograid is much larger than the 11238 |
variation in the exponential factor ex(L®), where AT
=T'—T. This criterion arises from the requirement that the
peak in the reweighted distribution Ed5) avoid the
“wings” of the measured histogram. Typically we found 11233 |
approximately 16 points in each bin and the exponential
factor varied by about 10.

Zhang et al. [6] made similar plots of the free energy
F(S,T,L) as a function of the nematic order parame®er
rather than the energl. For the system sizes studied by
these authors, withL<28, the free energy function

TL

1.1228

F(E,T,L) is a much weaker indicator of the nature of the NI e

transition. However, for the system sizes we have studied

with 30<L <70, the free energy as a function Bfis a very 112235 50 100 150 200
good indicator as illustrated in Fig. 2. We calculated Lx5x107

F(ST,L) for L=28, the largest system s.|ze St!Jd'ed by FIG. 4. The transition temperatufie(L) (measured in units of
Zhanget al.z to check that our cluster aIg_onthm _y|elds the e/kg) as a function of. 3 (in units of 5x 10" inverse cubic lattice
same fransition temperature they determined using the CORpacingy, for the eight system sizes shown in Fig. 3, showing ap-
ventional single spin flip MC algorithm. In general we did parent finite size scaling behavitihe straight line fitgiven by Eq.

not calculate=(S,T,L) because this requires calculation of a (9) for system sizet =35 (compare, however, with the behavior of
histogramH(E,S, T,L) dependent oisas well asE in order  the free energy barrier shown in Figl. ¥he extrapolation of this

to carry out the reweighting. Calculation of this multiple his- line to infinite system size yields an estimate for the upper bound on
togram with sufficiently good statistics is prohibitively time the transition temperatuséndicated by the arropin the thermody-
consuming for large systems. namic limit.
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ing by fitting our data forAF(L) to the formAF(L)=al? In conclusion, we have used a modification of the single
+bL+c, where the term proportional t@is the finite size cluster Wolff algorithm for nematic systems to efficiently
scaling law and the term proportional torepresents the study the NI transition in_LebwohI-Lasher systems. As in the
leading correction to scaling. We find that the rabga case of the cluster algorithms developed originally for ferro-
~30. Thus, to observe finite size scaling, one must Have Magnetic models, this algorithm allows us to overcome the
>30. critical slowing down associated with conventional single
The transition temperaturg.(L) for a particular system fiP Monte Carlo simulations. The phase space can then be
sizeL is given by the value of the temperature where the twgsamPpled efficiently near the transition as the system will flip
free energy wells have equal depths. Our resultsTigi) readily between the ordered and disordered _phases. Wg have
are shown in Fig. 4. From the straight line plotted in thebeen a}ble to pbservg a clear free energy barrier separating the
figure we see thaf thé finite size scaling relation nematic and isotropic phases, and have found that very large
system sizesl(>30) will be needed to observe finite size
AT=T.~ T (L)=L"3 9) scaling behavior. We have also applied the algorithm to
© ¢ study the behavior of disclination loops in the transition re-
appears to Work We” for Systems Of S|t&35 Given the g|0n [16] and the eff|C|en-Cy of the algo”thm should a”OW.
behavior of AF(L) shown in Fig. 3, one should view this the study of many other interesting properties of the transi-

relation with caution. However, we can use this relation to!o"-

provide an estimate for an upper bound for the transition We thank Professor J. M. Kosterlitz for many helpful dis-
temperature from the intersection of the straight line with thecussions and suggestions. This work was supported by the
Tc(L) axis, yielding T,=1.1225-0.0001. This value is National Science Foundation under Grant No. DMR-
lower than that obtained in Ref6], T.=1.1232-0.0001, 9873849. Computational work in support of this research
which is not surprising given that smaller system sizes weravas performed at Brown University’s Theoretical Physics

studied in the latter work. Computing Facility.
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